Project overview

SEAMLESS

Project coordinator: Stefano Ciavatta, Plymouth Marina Laboratory

Project manager, Jessica Heard, Plymouth Marina Laboratory

MEAP-TT meeting, 10th March 2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776480

@SEAMLESSproject
www.SEAMLESSproject.org

Novel opportunities and aspiration to predict better ocean ecosystems, by integrating new data and models

Vision

to support sustainable food-security from the ocean in a changing climate

Mission

to improve the operational simulation of indicators related to climate impact, marine food-webs and stakeholders' needs

United Nations Decade

for Sustainable Development

of Ocean Science

A predicted ocean

× Stakeholders

MBARI

Monterey Bay Aquarium Research Institute

European

International Ocean Colour Coordinating Group

Objectives

Objective 6 Improved CMEMS BGC models **Objective 1** CMEMS portfolio with new ecosystem indicators

Overall objective

Objective 5

space-in situ DA

CMEMS capability to deliver new operational products for carbon cycle, water quality and food web indicators

Impact

Objective 2

New ensemble DA methods

Objective 4 Coupled physical-BGC DA **Objective 3** SEAMLESS prototype

SEAMLESS links to CMEMS MFCs

BGC models: PISCES, ERSEM, BFM, ECOSMO, ERGOM, [BAHMBI] **Physical models**: NEMO, HYCOM, HBM Science overview

CMEMS current approach

The SEAMLESS prototype

Hypothesis: New integrated observing networks and advanced ensemble data assimilation methods can improve the simulation of marine ecosystem indicators (i.e. increase their observability, controllability and identifiability)

to maximize the flow of information from the new observing networks towards the controllable ecosystem indicators

2. Coupled assimilation of physical and biogeochemical data,

to improve the consistency of the biogeochemical and physical simulations

3. Coupled assimilation of remote sensing and in situ biogeochemical data to link the surface and subsurface ecosystem dynamics

4. Coupled assimilation for joint state-parameter estimation, to improve the models and their simulation of biogeochemical indicators.

WP3 Scientific strategy (II)

- Develop a strategy to focus on perturbations that most effectively reduce the uncertainty of the SEAMLESS target indicators (POC, trophic efficiency, PP, pH, O2, PFT, Phenology) in the different CMEMS regions, according to the system's observability / controllability
- Task 3.2 Example of GOTM-FABM-ERSEM at BATS (1D) :

WP3 Scientific strategy (I)

- Consolidation of ensemble generation methods used to inject stochasticity in the coupled physical-BGC models, e.g. through (i) initial conditions, (ii) external surface/lateral forcing, (iii) internal physical parameters (e.g. ocean mixing schemes) and biological parameters (BGC processes), (iv) intrinsic model equation solvers. Ensemble methods can combine all perturbations together to explore their nonlinear interactions.
- Task 3.1 Example for NEMO/PISCES

Up-to-date NEMO-PISCES-4

Deterministic MOI run (2014)

> iORCA025 grid (75 levels) Online coupling PHY-BGC PHY: forçages atm ERA5, VVL, GLS... BGC: climatology for initialization: WOA2018 + GLODAP

to maximize the flow of information from the new observing networks towards the controllable ecosystem indicators

2. Coupled assimilation of physical and biogeochemical data,

to improve the consistency of the biogeochemical and physical simulations

3. Coupled assimilation of remote sensing and in situ biogeochemical data to link the surface and subsurface ecosystem dynamics

4. Coupled assimilation for joint state-parameter estimation,

to improve the models and their simulation of biogeochemical indicators.

Coupled physical and biogeochemical data assimilation (BGC helps PHY)

- "Incremental pressure corrections" (Waters et al., 2017)
- "Pragmatic fixes" (Park et al., 2018)

...did not really fix the issue

to maximize the flow of information from the new observing networks towards the controllable ecosystem indicators

2. Coupled assimilation of physical and biogeochemical data,

to improve the consistency of the biogeochemical and physical simulations

3. Coupled assimilation of remote sensing and in situ biogeochemical data

to link the surface and subsurface ecosystem dynamics

4. Coupled assimilation for joint state-parameter estimation,

to improve the models and their simulation of biogeochemical indicators.

Assimilation of satellite SST and OC + glider physical (T,S) and BGC (chl, O2) on the NWE Shelf (NEMO-FABM-ERSEM) – PML

The multi-platform (satellite-glider) assimilation optimally combines all the benefits of single platform systems and substantially improves the simulation of all the assimilated variables

Difference between analysis and observations

The <u>satellite OC assimilation</u> corrects chlorophyll within ML, whilst <u>multi-platform</u> <u>assimilation</u> across the whole water column

to maximize the flow of information from the new observing networks towards the controllable ecosystem indicators

2. Coupled assimilation of physical and biogeochemical data,

to improve the consistency of the biogeochemical and physical simulations

3. Coupled assimilation of remote sensing and in situ biogeochemical data to link the surface and subsurface ecosystem dynamics

4. Coupled assimilation for joint state-parameter estimation,

to improve the models and their simulation of biogeochemical indicators.

BGC model global parameter estimation

Seasonal adjustment in the estimated BGC model parameters observed

parameter	grPl	grPs	mrPl	mrPs	mrZ I	mrZ s	srDO	CrSi
[unit]	[1/day]	[1/day]	[1/day]	[1/day]	[1/day]	[1/day]	[m/day]	[molC/molSi]
error [%]	20	20	20	20	20	20	20	20
Min	0.8	0.5	0.02	0.02	0.05	0.05	3.5	3.0
Max	3.0	2.0	0.25	0.25	0.4	0.4	20.0	13.0
initial estimate	1.27	1.099	0.039	0.079	0.097	0.199	5.049	6.752
Reanalysis estimate	2.432	1.728	0.047	0.051	0.098	0.190	4.723	6.956

grPI: growth rate of large phytoplankton. grPs: growth rate of small phytoplankton. mrPI: mortality rate of large phytoplankton. mrPs: mortality rate of small phytoplankton. mrZI: mortality rate of large zooplankton. mrZs: mortality rate of small zooplankton. srDO: sinking rate of detritus and opal. CrSi: Carbon to Silicate ratio. Reanalysis estimated values are from 04/07/2007.

The SEAMLESS prototype

Attend our training workshops!

MFC	DA method	Assimilated BGC data	PHY-BGC coupled DA	SAT-IS coupled DA	Improved parameters
NIMC	NEMOVar	OC: PFT chl	No	No	NA
	Hybrid Ensemble NEMOVar	OC: chl, ops IS: chl ^g , N ^g , P ^g	Yes	Yes	Yes
IBI	None	No	No	No	NA
	SEEK stochastic error parameters	OC: chl	Yes	No	Yes
GLO	SEEK (climatological base)	OC: chl	No	No	NA
	SEEK stochastic error parameters	OC: chl	Yes	No	Yes
MED	3DVarBio	OC: chl	No	No	NA
MED	Hybrid Ensemble 3DVarBio	OC: chl IS:chl ^{a,g} , N ^{a,g} , opt ^a	No*	Yes	Yes
BAL	ESTKF in preparation	No	No	No	NA
	Hybrid EnKF PF	OC: chl	Yes	No	Yes
	DEnKF/EnKS	OC: chl IS: N ^b , P ^b , S ^b	Yes	Yes	NA
ARC	DEnKF/EnKS	OC: chl IS: chl ^a , N ^a ,P ^b , S ^b	Yes	Yes	Yes

Controlled indicators

Particulate organic carbon ** Phytoplankton phenology ** Phytoplankton functional types * Primary production * Trophic efficiency * Dissolved oxygen * pH *

"The stakeholders of our CMEMS stakeholder, are SEAMLESS stakeholders"